864 research outputs found

    Strings on conifolds from strong coupling dynamics: quantitative results

    Full text link
    Three quantitative features of string theory on AdS_5 x X_5, for any (quasi)regular Sasaki-Einstein X_5, are recovered exactly from an expansion of field theory at strong coupling around configurations in the moduli space of vacua. These configurations can be thought of as a generalized matrix model of (local) commuting matrices. First, we reproduce the spectrum of scalar Kaluza-Klein modes on X_5. Secondly, we recover the precise spectrum of BMN string states, including a nontrivial dependence on the volume of X_5. Finally, we show how the radial direction in global AdS_5 emerges universally in these theories by exhibiting states dual to AdS giant gravitons.Comment: 1+28 pages. 1 figur

    Black Hole Production from High Energy Scattering in AdS/CFT

    Full text link
    In this article we show how to set up initial states in N=4{\cal N} =4 SYM theory that correspond to high energy graviton collisions, leading to black hole formation in AdS5×S5AdS_5\times S^5. For this purpose, we study states in the gauge theory that are dual to graviton wavepackets localized at the center of AdS5AdS_5, and carrying large angular momentum along the S5S^5. These states are created by exciting only the s-wave mode of one of the complex adjoint scalars of SYM. For a single graviton, the state is 1/2 BPS and one can show that it is dual to a linearized 1/2 BPS geometry in the bulk. Exploiting this dictionary, we show how to localize the particle's wavefunciton so that the dual linearized metric has the form of a Aichelburg-Sexl shock wave. One can then put two such shock waves into a head-on collision, which is known to produce a trapped surface. Finally, we discuss the prospect of studying graviton scattering directly at strong coupling in the gauge theory using a reduced model of matrix quantum mechanics.Comment: 11 pages, revtex format, no figure

    Strings on conifolds from strong coupling dynamics, part I

    Full text link
    A method to solve various aspects of the strong coupling expansion of the superconformal field theory duals of AdS_5 x X geometries from first principles is proposed. The main idea is that at strong coupling the configurations that dominate the low energy dynamics of the field theory compactified on a three sphere are given by certain non-trivial semi-classical configurations in the moduli space of vacua. We show that this approach is self-consistent and permits one to express most of the dynamics in terms of an effective N=4 SYM dynamics. This has the advantage that some degrees of freedom that move the configurations away from moduli space can be treated perturbatively, unifying the essential low energy dynamics of all of these theories. We show that with this formalism one can compute the energies of strings in the BMN limit in the Klebanov-Witten theory from field theory considerations, matching the functional form of results found using AdS geometry. This paper also presents various other technical results for the semiclassical treatment of superconformal field theories.Comment: 52 pages, JHEP3 styl

    A study of open strings ending on giant gravitons, spin chains and integrability

    Full text link
    We systematically study the spectrum of open strings attached to half BPS giant gravitons in the N=4 SYM AdS/CFT setup. We find that some null trajectories along the giant graviton are actually null geodesics of AdS_5x S^5, so that we can study the problem in a plane wave limit setup. We also find the description of these states at weak 't Hooft coupling in the dual CFT. We show how the dual description is given by an open spin chain with variable number of sites. We analyze this system in detail and find numerical evidence for integrability. We also discover an interesting instability of long open strings in Ramond-Ramond backgrounds that is characterized by having a continuum spectrum of the string, which is separated from the ground state by a gap. This instability arises from accelerating the D-brane on which the strings end via the Ramond-Ramond field. From the integrable spin chain point of view, this instability prevents us from formulating the integrable structure in terms of a Bethe Ansatz construction.Comment: 38 pages+appendices, 9 figures. Uses JHEP3. v2: added reference

    Multi-matrix models and emergent geometry

    Full text link
    Encouraged by the AdS/CFT correspondence, we study emergent local geometry in large N multi-matrix models from the perspective of a strong coupling expansion. By considering various solvable interacting models we show how the emergence or non-emergence of local geometry at strong coupling is captured by observables that effectively measure the mass of off-diagonal excitations about a semiclassical eigenvalue background. We find emergent geometry at strong coupling in models where a mass term regulates an infrared divergence. We also show that our notion of emergent geometry can be usefully applied to fuzzy spheres. Although most of our results are analytic, we have found numerical input valuable in guiding and checking our results.Comment: 1+34 pages, 4 figures. References adde

    Aspects of ABJM orbifolds with discrete torsion

    Full text link
    We analyze orbifolds with discrete torsion of the ABJM theory by a finite subgroup Γ\Gamma of SU(2)×SU(2)SU(2)\times SU(2) . Discrete torsion is implemented by twisting the crossed product algebra resulting after orbifolding. It is shown that, in general, the order mm of the cocycle we chose to twist the algebra by enters in a non trivial way in the moduli space. To be precise, the M-theory fiber is multiplied by a factor of mm in addition to the other effects that were found before in the literature. Therefore we got a ZkΓm\mathbb{Z}_{\frac{k|\Gamma|}{m}} action on the fiber. We present a general analysis on how this quotient arises along with a detailed analysis of the cases where Γ\Gamma is abelian

    A Monte-Carlo study of the AdS/CFT correspondence: an exploration of quantum gravity effects

    Get PDF
    In this paper we study the AdS/CFT correspondence for N=4 SYM with gauge group U(N), compactified on S^3 in four dimensions using Monte-Carlo techniques. The simulation is based on a particular reduction of degrees of freedom to commuting matrices of constant fields, and in particular, we can write the wave functions of these degrees of freedom exactly. The square of the wave function is equivalent to a probability density for a Boltzman gas of interacting particles in six dimensions. From the simulation we can extract the density particle distribution for each wave function, and this distribution can be interpreted as a special geometric locus in the gravitational dual. Studying the wave functions associated to half-BPS giant gravitons, we are able to show that the matrix model can measure the Planck scale directly. We also show that the output of our simulation seems to match various theoretical expectations in the large N limit and that it captures 1/N effects as statistical fluctuations of the Boltzman gas with the expected scaling. Our results suggest that this is a very promising approach to explore quantum corrections and effects in gravitational physics on AdS spaces.Comment: 40 pages, 7 figures, uses JHEP. v2: references adde

    BPS Condensates, Matrix Models and Emergent String Theory

    Get PDF
    A prescription is given for computing anomalous dimensions of single trace operators in SYM at strong coupling and large NN using a reduced model of matrix quantum mechanics. The method involves treating some parts of the operators as "BPS condensates" which, in certain limit, have a dual description as null geodesics on the S5S^5. In the gauge theory, the condensate is similar to a representative of the chiral ring and it is described by a background of commuting matrices. Excitations around these condensates correspond to excitations around this background and take the form of "string bits" which are dual to the "giant magnons" of Hofman and Maldacena. In fact, the matrix model approach gives a {\it quantum} description of these string configurations and explains why the infinite momentum limit suppresses the quantum effects. This method allows, not only to derive part of the classical sigma model Hamiltonian of the dual string (in the infinite momentum limit), but also its quantum canonical structure. Therefore, it provides an alternative method of testing the AdS/CFT correspondence without the need of integrability.Comment: 36 pages, 1 figure, 2 appendices, v2: references adde

    A renormalization procedure for tensor models and scalar-tensor theories of gravity

    Get PDF
    Tensor models are more-index generalizations of the so-called matrix models, and provide models of quantum gravity with the idea that spaces and general relativity are emergent phenomena. In this paper, a renormalization procedure for the tensor models whose dynamical variable is a totally symmetric real three-tensor is discussed. It is proven that configurations with certain Gaussian forms are the attractors of the three-tensor under the renormalization procedure. Since these Gaussian configurations are parameterized by a scalar and a symmetric two-tensor, it is argued that, in general situations, the infrared dynamics of the tensor models should be described by scalar-tensor theories of gravity.Comment: 20 pages, 3 figures, references added, minor correction
    corecore